Skip to main content

Comparison of Different Waste-to-Energy Processes


Major components of Waste-to-Energy Processes
  1. Front end MSW pre-processing is used to prepare MSW for treatment and separate any recyclables
  2. Conversion unit (reactor)
  3. Gas and residue treatment plant (optional)
  4. Energy recovery plant (optional): Energy / chemicals production system includes gas turbine, boiler, internal combustion engines for power production. Alternatively, ethanol or other organic chemicals can be produced
  5. Emissions clean up
Incineration
  • Combustion of raw MSW, moisture less than 50%
  • Sufficient amount of oxygen is required to fully oxidize the fuel
  • Combustion temperatures are in excess of 850oC
  • Waste is converted into CO2 and water concern about toxics (dioxin, furans)
  • Any non-combustible materials (inorganic such as metals, glass) remain as a solid, known as bottom ash (used as feedstock in cement and brick manufacturing)
  • Fly ash APC (air pollution control residue) particulates, etc
  • Needs high calorific value waste to keep combustion process going, otherwise requires high energy for maintaining high temperatures
Anaerobic Digestion
  •  Well-known technology for domestic sewage and organic wastes treatment, but not for unsorted MSW
  • Biological conversion of biodegradable organic materials in the absence of oxygen at temperatures 55 to 75oC (thermophilic digestion – most effective temperature range)
  • Residue is stabilized organic matter that can be used as soil amendment after proper dewatering
  • Digestion is used primarily to reduce quantity of sludge for disposal / reuse
  • Methane gas generated used for electricity / energy generation or flared
Gasification
  • Can be seen as between pyrolysis and combustion (incineration) as it involves partial oxidation.
  • Exothermic process (some heat is required to initialize and sustain the gasification process).
  • Oxygen is added but at low amounts not sufficient for full oxidation and full combustion.
  • Temperatures are above 650oC
  • Main product is syngas, typically has net calorific value of 4 to 10 MJ/Nm3
  • Other product is solid residue of non-combustible materials (ash) which contains low level of carbon
Pyrolysis
  • Thermal degradation of organic materials through use of indirect, external source of heat
  • Temperatures between 300 to 850oC are maintained for several seconds in the absence of oxygen.
  • Product is char, oil and syngas composed primarily of O2, CO, CO2, CH4 and complex hydrocarbons.
  • Syngas can be utilized for energy production or proportions can be condensed to produce oils and waxes
  • Syngas typically has net calorific value (NCV) of 10 to 20 MJ/Nm
Plasma Gasification
  • Use of electricity passed through graphite or carbon electrodes, with steam and/or oxygen / air injection to produce electrically conducting gas (plasma)
  • Temperatures are above 3000oC
  • Organic materials are converted to syngas composed of H2, CO
  • Inorganic materials are converted to solid slag
  • Syngas can be utilized for energy production or proportions can be condensed to produce oils and waxes

        Net Energy Generation Potential Per Ton MSW
Waste Management Method
Energy Potential*
(kWh per ton MSW)
Recycling
2,250
Landfilling
   105
WTE Incineration
   585
Gasification
   660
Pyrolysis
   660
Anaerobic Digestion
   250
 
Cost Economics of WTE Processes
Technology
Plant capacity
(tons/day)
Capital cost
(M US$)
O&M cost
(US$/ton)
Planning to commissioning
(months)
Pyrolysis
70-270
16 - 90
80 - 150
12 - 30
Gasification
900
15 - 170
80 - 150
12 – 30
Incineration
1300
30 - 180
80 - 120
54 – 96
Plasma gasification
900
50 - 80
80 - 150
12 – 30
Anaerobic digestion
300
20 - 80
60 - 100
12 - 24
In vessel composting
500
50 – 80
30 - 60
9 – 15
Sanitary landfill
500
5 - 10
10 – 20
9 – 15
Bioreactor landfill
500
10 – 15
15 - 30
12 – 18

Enhanced by Zemanta

Popular posts from this blog

Biomass Energy in Jordan

Image via Wikipedia Municipal solid wastes represent the best source of biomass in Jordan. In terms of quantity per capita and constituents, the waste generated in Jordan is comparable to most semi-industrialized nations. The per capita of waste generated in Jordan is about 0.9 kg/day. The total generation of municipal waste in Jordan is estimated at 1.84 million tons per year.   The main resources of organic waste in Jordan that can be potentially used to produce biogas are summarized as follows: Municipal waste from big cities Organic wastes from slaughterhouse, vegetable market, hotels and restaurants. Organic waste from agro-industries Animal manure, mainly from cows and chickens. Sewage sludge and septic. Olive mills. Organic industrial waste According to a study conducted by the Greater Amman Municipality, around 1.5 million tonnes of organic waste was generated in Jordan in 2009. In addition, an annual amount of 1.83 million cubic meter of septic and se...

A Glance at Composting Strategies

Image via Wikipedia The methodology of composting can be categorized into three major segments—anaerobic composting, aerobic composting, and vermicomposting. In  anaerobic composting , the organic matter is decomposed in the absence of air. Organic matter may be collected in pits and covered with a thick layer of soil and left undisturbed six to eight months. The compost so formed may not be completely converted and may include aggregated masses. Aerobic composting is the process by which organic wastes are converted into compost or manure in presence of air and can be of different types. The most common is the Heap Method, where organic matter needs to be divided into three different types and to be placed in a heap one over the other, covered by a thin layer of soil or dry leaves. This heap needs to be mixed every week, and it takes about three weeks for conversion to take place. The process is same in the Pit Method, but carried out specially constructed pits. Mixing has ...

Biomass Energy Developments in Jordan

Image via Wikipedia Renewable energy systems have been used in Jordan since early 1970s. Infact, Jordan has been a pioneer in renewable energy promotion in the Middle East with its first wind power pilot project in Al-Ibrahemiya as early as 1988. Systematic monitoring of the technological developments and implementation/execution of demonstration and pilot projects has been the hallmark of Jordan’s foray into clean energy sector. Municipal solid wastes represent the best source of biomass in Jordan. In terms of quantity per capita and constituents, the waste generated in Jordan is comparable to most semi-industrialized nations. The per capita of waste generated in Jordan is about 0.9 kg/day. The total generation of municipal waste in Jordan is estimated at 1.84 million tons per year.   The main resources of organic waste in Jordan that can be potentially used to produce biogas are summarized as follows: Municipal waste from big cities Organic wastes from slaughterhouse, veget...