Skip to main content

Posts

Showing posts from December, 2011

Storage of Biomethane

Image via Wikipedia The typical composition of raw biogas does not meet the minimum CNG fuel specifications. In particular, the CO 2 and sulfur content in raw biogas is too high for it to be used as vehicle fuel without additional processing. Biogas that has been upgraded to biomethane by removing the H 2 S, moisture, and CO 2 can be used as a vehicular fuel. Biomethane is less corrosive than biogas, apart from being more valuable as a fuel. Since production of such fuel typically exceeds immediate on-site demand, the biomethane must be stored for future use, usually either as compressed biomethane (CBM) or liquefied biomethane (LBM). Biomethane can be liquefied, creating a product known as liquefied biomethane (LBM). Two of the main advantages of LBM are that it can be transported relatively easily and it can be dispensed to either LNG vehicles or CNG vehicles. Liquid biomethane is transported in the same manner as LNG, that is, via insulated tanker trucks designed for tran

Biomass Energy in South Africa

Image via Wikipedia South Africa has tremendous biofuel potential when considering the capacity to grow total plant biomass (all lignocellulosic plant biomass. According to conservative estimates, South Africa produces about 18 million tonnes of agricultural and forestry residues every year. The South African biofuels target for 2008‐2013, according to Industrial Biofuels Strategy (2007), has been fixed at 2% penetration level in the national liquid fuel supply, which corresponds to 400 million litres per annum.  When considering the use of 50‐70% of this plant biomass with second generation biochemical and thermochemical technologies, South Africa has the potential to substitute the bulk of its current liquid fossil fuel usage (currently 21.2 BL/annum) with renewable biofuels. However, the only real activity has been US$437 million investment by the South Africa’s Industrial Development Corporation (IDC) and Energy Development Corporation (EDC) in two biofuels projects that wil

Various Dimensions of Sustainable Development

Image by EURegional via Flickr Social Availability of energy has a direct impact on poverty, employment opportunities, education, demographic transition, indoor pollution and health, and has gender- and age-related implications. In rich countries, energy for lighting, heating and cooking is available at the flip of a switch. The energy is clean, safe, reliable and affordable. In poor countries, up to six hours a day is required to collect wood and dung for cooking and heating, and this task is usually done by women, who could be otherwise engaged in more productive activities. Economic Modern economies depend on a reliable and adequate energy supply, and developing countries need to secure this as a prerequisite for industrialization. All sectors of the economy — residential, commercial, transport, service and agriculture — demand modern energy services. These services in turn foster economic and social development at the local level by raising productivity and enabling l

Food Waste Management - An Overview

Image via Wikipedia Food waste is an untapped energy source that mostly ends up rotting in landfills, thereby releasing greenhouse gases into the atmosphere. Food waste is difficult to treat or recycle since it contains high levels of sodium salt and moisture, and is mixed with other waste during collection. Major generators of food wastes include hotels, restaurants, supermarkets, residential blocks, cafeterias, airline caterers, food processing industries, etc. In United States, food waste is the third largest waste stream after paper and yard waste. Around 12.7 percent of the total municipal solid waste (MSW) generated in the year 2008 was food scraps that amounted to about 32 million tons. According to EPA, about 31 million tons of food waste was thrown away into landfills or incinerators in 2008. As far as United Kingdom is concerned, households throw away 8.3 million tons of food each year. These statistics are an indication of tremendous amount of food waste generated a

Growth of Waste-to-Energy Industry

Image via Wikipedia The global market for WTE technologies was valued at US$19.9bn in 2008. This has been forecasted to increase to US$26.2bn by 2014. While the biological WTE segment is expected to grow more rapidly from US$1.4bn in 2008 to approximately US$2.5bn in 2014, the thermal WTE segment is nonetheless estimated to still constitute the vast bulk of the entire industry’s worth. This segment was valued at US$18.5bn in 2008 and is forecasted to expand to US$23.7bn in 2014. The global market for waste to energy technologies has shown substantial growth over the last five years, increasing from $4.83 billion in 2006, to $7.08 billion in 2010 with continued market growth through the global economic downturn. Over the coming decade, growth trends are expected to continue, led by expansion in the US, European, Chinese, and Indian markets. By 2021, based on continued growth in Asian markets combined with the maturation of European waste management regulations and European and

Vermicomposting

Image via Wikipedia Vermicomposting is a type of composting in which certain species of earthworms are used to enhance the process of organic waste conversion and produce a better end-product. Vermicomposting is a mesophilic process utilizing microorganisms and earthworms. Earthworms feeds the organic waste materials and passes it through their digestive system and gives out in a granular form (cocoons) which is known as vermicompost. Like regular compost, vermicompost also benefits the environment by reducing the need for chemical fertilizers and decreasing the amount of waste going to landfills/dumpsites. Vermicompost is primarily earthworm excrement, called castings, which can improve biological, chemical, and physical properties of the soil. The chemical secretions in the earthworm’s digestive tract help break down soil and organic matter, so the castings contain more nutrients that are immediately available to plants. Earthworms consume various organic wastes and reduce

What is POME?

Palm Oil processing gives rise to highly polluting waste-water, known as Palm Oil Mill Effluent (POME), which is often discarded in disposal ponds, resulting in the leaching of contaminants that pollute the groundwater and soil, and in the release of methane gas into the atmosphere. POME is an oily wastewater generated by palm oil processing mills and consists of various suspended components. This liquid waste combined with the wastes from steriliser condensate and cooling water is called palm oil mill effluent (POME). On average, for each ton of FFB (fresh fruit bunches) processed, a standard palm oil mill generate about 1 tonne of liquid waste with biochemical oxygen demand (BOD) 27 kg, chemical oxygen demand (COD) 62 kg, suspended solids (SS) 35 kg and oil and grease 6 kg POME has a very high Biochemical Oxygen Demand (BOD) and Chemical Oxygen Demand (COD), which is 100 times more than the municipal sewage. POME is a non-toxic waste, as no chemical is added duri

Composting Strategies

The methodology of composting can be categorized into three major segments—anaerobic composting, aerobic composting, and vermicomposting. In anaerobic composting , the organic matter is decomposed in the absence of air. Organic matter may be collected in pits and covered with a thick layer of soil and left undisturbed six to eight months. The compost so formed may not be completely converted and may include aggregated masses. Aerobic composting is the process by which organic wastes are converted into compost or manure in presence of air and can be of different types. The most common is the Heap Method, where organic matter needs to be divided into three different types and to be placed in a heap one over the other, covered by a thin layer of soil or dry leaves. This heap needs to be mixed every week, and it takes about three weeks for conversion to take place. The process is same in the Pit Method, but carried out specially constructed pits. Mixing has to be done e

Growth of Waste-to-Energy Sector

Image by Colt Group via Flickr The global market for WTE technologies was valued at US$19.9bn in 2008. This has been forecasted to increase to US$26.2bn by 2014. While the biological WTE segment is expected to grow more rapidly from US$1.4bn in 2008 to approximately US$2.5bn in 2014, the thermal WTE segment is nonetheless estimated to still constitute the vast bulk of the entire industry’s worth. This segment was valued at US$18.5bn in 2008 and is forecasted to expand to US$23.7bn in 2014. The global market for waste to energy technologies has shown substantial growth over the last five years, increasing from $4.83 billion in 2006, to $7.08 billion in 2010 with continued market growth through the global economic downturn. Over the coming decade, growth trends are expected to continue, led by expansion in the US, European, Chinese, and Indian markets. By 2021, based on continued growth in Asian markets combined with the maturation of European waste management re