Skip to main content

Posts

Showing posts with the label waste management

Recyclable Waste Collection Methods

Image via Wikipedia There are three basic ways in which communities can offer plastic recycling collection services for plastic bottles and containers. The first, and most widely accessible, collection method is curbside collection of recyclables. Curbside recycling programs are generally the most convenient for community residents to participate in and yield high recovery rates as a result. Communities that provide curbside collection generally request residents to separate designated recyclables from their household garbage and to place them into special receptacles or bags, which are then set out at the curb for collection by municipal or municipally-contracted crews. The second collection method is known as drop-off recycling. In this method, containers for designated recyclable materials are placed at central collection locations throughout the community, such as parking lots, mosques, schools, malls or other civic associations. The containers are generally marked as ...

Growth of Waste-to-Energy Sector

Image by Colt Group via Flickr The global market for WTE technologies was valued at US$19.9bn in 2008. This has been forecasted to increase to US$26.2bn by 2014. While the biological WTE segment is expected to grow more rapidly from US$1.4bn in 2008 to approximately US$2.5bn in 2014, the thermal WTE segment is nonetheless estimated to still constitute the vast bulk of the entire industry’s worth. This segment was valued at US$18.5bn in 2008 and is forecasted to expand to US$23.7bn in 2014. The global market for waste to energy technologies has shown substantial growth over the last five years, increasing from $4.83 billion in 2006, to $7.08 billion in 2010 with continued market growth through the global economic downturn. Over the coming decade, growth trends are expected to continue, led by expansion in the US, European, Chinese, and Indian markets. By 2021, based on continued growth in Asian markets combined with the maturation of European waste management re...

A Glance at Composting Strategies

Image via Wikipedia The methodology of composting can be categorized into three major segments—anaerobic composting, aerobic composting, and vermicomposting. In  anaerobic composting , the organic matter is decomposed in the absence of air. Organic matter may be collected in pits and covered with a thick layer of soil and left undisturbed six to eight months. The compost so formed may not be completely converted and may include aggregated masses. Aerobic composting is the process by which organic wastes are converted into compost or manure in presence of air and can be of different types. The most common is the Heap Method, where organic matter needs to be divided into three different types and to be placed in a heap one over the other, covered by a thin layer of soil or dry leaves. This heap needs to be mixed every week, and it takes about three weeks for conversion to take place. The process is same in the Pit Method, but carried out specially constructed pits. Mixing has ...

Farm Waste Management

Image via Wikipedia Traditional methods of farm waste management are unscientific and have several negative externalities associated with them. Being the emitter of stock pollutants, like CO, SOx, NOx, PAHs, and aerosols, which accumulates in the atmosphere, traditional practices have a regional impact apart from local damage. Crop burning decrease the fertility of soil. To meet increasing market demand for more produce, farmers add more chemical fertilizers. With continued excessive usage of chemicals causes’ salinity, further degrading the soil. Burning of dung cakes/ crop residues for cooking and domestic heating causes health ailments like pulmonary diseases (lung cancer, tuberculosis) due to passive intake by people of the house, especially women and children. The adoption of anaerobic digestion is required for better utilization of renewable energy resources. However, certain factors limit its widespread application in rural societies in developing countries like India. ...

Waste-to-Energy - Global Outlook

Image via Wikipedia Energy is the driving force for development in all countries of the world. The increasing clamor for energy and satisfying it with a combination of conventional and renewable resources is a big challenge. Accompanying energy problems in different parts of the world, another problem that is assuming critical proportions is that of urban waste accumulation. The quantity of waste produced all over the world amounted to more than 12 billion tonnes in 2006, with estimates of up to 13 billion tonnes in 2011. The rapid increase in population coupled with changing lifestyle and consumption patterns is expected to result in an exponential increase in waste generation of upto 18 billion tonnes by year 2020. Waste generation rates are affected by socio-economic development, degree of industrialization, and climate. Generally, the greater the economic prosperity and the higher percentage of urban population, the greater the amount of solid waste produced. Re...

Benefits of Anaerobic Digestion

Image via Wikipedia Anaerobic digestion provides a variety of benefits. These may be classified into three groups viz. environmental, economic and energy benefits: The environmental benefits include: a)      Elimination of malodorous compounds. b)      Reduction of pathogens. c)      Deactivation of weed seeds. d)     Production of sanitized compost. e)      Decrease in GHGs emission. f)       Reduced dependence on inorganic fertilizers by capture and reuse of nutrients. g)      Promotion of carbon sequestration h)      Beneficial reuse of recycled water i)        Protection of groundwater and surface water resources. j)        Improved social acceptance Anaerobic digestion is advantageous in terms of energy generat...

Energy Generation from Food Wastes

The waste management hierarchy suggests that reduce, reuse and recycling should always be given preference in a typical waste management system. However, these options cannot be applied uniformly for all kinds of wastes. For examples, organic waste is quite difficult to deal with using the conventional 3R strategy.  Of the different types of organic wastes available, food waste holds the highest potential in terms of economic exploitation as it contains high amount of carbon and can be efficiently converted into biogas and organic fertilizer. There are numerous places which are the sources of large amounts of food waste and hence a proper food-waste management strategy needs to be devised for them to make sure that either they are disposed off in a safe manner or utilized efficiently. These places include hotels, restaurants, malls, residential societies, college/school/office canteens, religious mass cooking places, airline caterers, food and meat processing industries and veget...

Waste-to-Energy in Arab Countries

The high volatility in oil prices in the recent past and the resulting turbulence in energy markets has compelled many MENA countries, especially the non-oil producers, to look for alternate sources of energy, for both economic and environmental reasons. The significance of renewable energy has been increasing rapidly worldwide due to its potential to mitigate climate change, to foster sustainable development in poor communities, and augment energy security and supply. The Middle East is well-poised for waste-to-energy development, with its rich feedstock base in the form of municipal solid wastes, crop residues and agro-industrial wastes. The high rate of population growth, urbanization and economic expansion in the Middle East is not only accelerating consumption rates but also accelerating the generation of a wide variety of waste. Bahrain, Saudi Arabia, UAE, Qatar and Kuwait rank in the top-ten worldwide in terms of per capita waste generation. The gross urban waste generation qua...

Renewable Energy Generation from Tannery Wastes

The conventional leather tanning technology is highly polluting as it produces large amounts of organic and chemical pollutants. Wastes generated by the leather processing industries pose a major challenge to the environment. According to conservative estimates, about 600,000 tons per year of solid waste are generated worldwide by leather industry and approximately 40–50% of the hides are lost to shavings and trimmings. Everyday a huge quantity of solid waste, including trimmings of finished leather, shaving dusts, hair, fleshing, trimming of raw hides and skins, are being produced from the industries. Chromium, sulphur, oils and noxious gas (methane, ammonia, and hydrogen sulphide) are the elements of liquid, gas and solid waste of tannery industries. Biomethanation (or anaerobic digestion) systems are mature and proven processes that have the potential to convert tannery wastes into energy efficiently, and achieve the goals of pollution prevention/reduction, elimination of ...