Skip to main content

Bioenergy Potential in Southeast Asia

Sugar cane residue can be used as a biofuelImage via Wikipedia
Southeast Asia, with its abundant biomass resources, holds a strategic position in the global biomass energy atlas. There is immense potential of biopower in Southeast Asian countries due to plentiful supply of diverse forms of wastes such as agricultural residues, woody biomass, animal wastes, municipal solid waste, etc. The rapid economic growth and industrialization in the region has accelerated the drive to implement the latest waste-to-energy technologies in order to tap the unharnessed potential of biomass resources.
The Southeast Asian region is a big producer of wood and agricultural products which, when processed in industries, produces large amounts of biomass residues. According to conservative estimates, the amount of biomass residues generated from sugar, rice and palm oil mills is more than 200-230 million tons per year which corresponds to cogeneration potential of 16-19 GW.
In 2005, rice mills in the region produced 38 million tonnes of rice husk as solid residues. Sugar industry is an integral part of the industrial scenario in Southeast Asia accounting for about 10% of global sugar production. Malaysia, Indonesia and Thailand account for 90% of global palm oil production leading to the generation of thousands of tonnes of waste per annum in the form of empty fruit bunches (EFBs), fibers and shells, as well as liquid effluent. Woody biomass is a good energy resource due to presence of large number of forests and wood processing industries in the region.
The prospects of biogas power generation are also high in the region due to the presence of well-established food-processing and dairy industries. Another important biomass resource is contributed by municipal solid wastes in heavily populated urban areas.  In addition, there are increasing efforts from the public and private sectors to develop biomass energy systems for efficient biofuel production, e.g. bio-diesel from palm oil.
Current technologies for biomass utilization need urgent improvement towards best practice by making use of the latest trends in the waste-to-energy sector. Southeast Asian countries are yet to make optimum use of the additional power generation potential from biomass waste resources which could help them to partially overcome the long-term problem of energy supply. There can be several routes for dedicated power generation from biomass at various scales of power output. Cogeneration of heat and power from residues in forest-based and agro industries is being increasingly promoted by the private sector, mostly for in-house consumption. In contrast, utility companies in Western countries already supply electricity and heat from biomass to national grids and local communities.

Enhanced by Zemanta

Popular posts from this blog

Biomass Energy in Jordan

Image via Wikipedia Municipal solid wastes represent the best source of biomass in Jordan. In terms of quantity per capita and constituents, the waste generated in Jordan is comparable to most semi-industrialized nations. The per capita of waste generated in Jordan is about 0.9 kg/day. The total generation of municipal waste in Jordan is estimated at 1.84 million tons per year.   The main resources of organic waste in Jordan that can be potentially used to produce biogas are summarized as follows: Municipal waste from big cities Organic wastes from slaughterhouse, vegetable market, hotels and restaurants. Organic waste from agro-industries Animal manure, mainly from cows and chickens. Sewage sludge and septic. Olive mills. Organic industrial waste According to a study conducted by the Greater Amman Municipality, around 1.5 million tonnes of organic waste was generated in Jordan in 2009. In addition, an annual amount of 1.83 million cubic meter of septic and se...

Biomass Energy Developments in Jordan

Image via Wikipedia Renewable energy systems have been used in Jordan since early 1970s. Infact, Jordan has been a pioneer in renewable energy promotion in the Middle East with its first wind power pilot project in Al-Ibrahemiya as early as 1988. Systematic monitoring of the technological developments and implementation/execution of demonstration and pilot projects has been the hallmark of Jordan’s foray into clean energy sector. Municipal solid wastes represent the best source of biomass in Jordan. In terms of quantity per capita and constituents, the waste generated in Jordan is comparable to most semi-industrialized nations. The per capita of waste generated in Jordan is about 0.9 kg/day. The total generation of municipal waste in Jordan is estimated at 1.84 million tons per year.   The main resources of organic waste in Jordan that can be potentially used to produce biogas are summarized as follows: Municipal waste from big cities Organic wastes from slaughterhouse, veget...

Storage of Biomethane

Image via Wikipedia The typical composition of raw biogas does not meet the minimum CNG fuel specifications. In particular, the CO 2 and sulfur content in raw biogas is too high for it to be used as vehicle fuel without additional processing. Biogas that has been upgraded to biomethane by removing the H 2 S, moisture, and CO 2 can be used as a vehicular fuel. Biomethane is less corrosive than biogas, apart from being more valuable as a fuel. Since production of such fuel typically exceeds immediate on-site demand, the biomethane must be stored for future use, usually either as compressed biomethane (CBM) or liquefied biomethane (LBM). Biomethane can be liquefied, creating a product known as liquefied biomethane (LBM). Two of the main advantages of LBM are that it can be transported relatively easily and it can be dispensed to either LNG vehicles or CNG vehicles. Liquid biomethane is transported in the same manner as LNG, that is, via insulated tanker trucks designed for tran...