Skip to main content

Peat as Biomass Fuel

Upon drying, peat can be used as a fuel. It has industrial importance as a fuel in some countries, such as Ireland and Finland, where it is harvested on an industrial scale. In many countries, including Ireland and Scotland, where trees are often scarce, peat is traditionally used for cooking and domestic heating.

In Ireland, large-scale domestic and industrial peat usage is widespread. Specifically in the Republic of Ireland, a state-owned company called Bord na Móna is responsible for managing peat production. It produces milled peat which is used in power stations. It sells processed peat fuel in the form of peat briquettes which are used for domestic heating. These are oblong bars of densely compressed, dried and shredded peat. Briquettes are largely smokeless when burned in domestic fireplaces and as such are widely used in Irish towns and cities where burning non-smokeless coal is banned.

In Finland, peat (often mixed with wood at an average of 2.6%) is burned in order to produce heat and electricity. Peat provides approximately 6.2% of Finland's annual energy production, second only to Ireland. Finland classifies peat as a slowly renewing biomass fuel.

Popular posts from this blog

Waste-to-Energy Pathways

The conversion of organic waste material to energy can proceed along three main pathways – thermochemical, biochemical and physicochemical. Thermochemical conversion, characterized by higher temperature and conversion rates, is best suited for lower moisture feedstock and is generally less selective for products. Thermochemical conversion includes incineration, pyrolysis and gasification. The incineration technology is the controlled combustion of waste with the recovery of heat to produce steam which in turn produces power through steam turbines. Pyrolysis and gasification represent refined thermal treatment methods as alternatives to incineration and are characterized by the transformation of the waste into product gas as energy carrier for later combustion in, for example, a boiler or a gas engine. Bio-chemical conversion processes, which include anaerobic digestion and fermentation, are preferred for wastes having high percentage of organic biodegradable (putrescible) matter and hi...

Storage of Biomethane

Image via Wikipedia The typical composition of raw biogas does not meet the minimum CNG fuel specifications. In particular, the CO 2 and sulfur content in raw biogas is too high for it to be used as vehicle fuel without additional processing. Biogas that has been upgraded to biomethane by removing the H 2 S, moisture, and CO 2 can be used as a vehicular fuel. Biomethane is less corrosive than biogas, apart from being more valuable as a fuel. Since production of such fuel typically exceeds immediate on-site demand, the biomethane must be stored for future use, usually either as compressed biomethane (CBM) or liquefied biomethane (LBM). Biomethane can be liquefied, creating a product known as liquefied biomethane (LBM). Two of the main advantages of LBM are that it can be transported relatively easily and it can be dispensed to either LNG vehicles or CNG vehicles. Liquid biomethane is transported in the same manner as LNG, that is, via insulated tanker trucks designed for tran...