Skip to main content

Biogas from Crop Residues

English: Ladbergen Telgter Damm. Biogasanlage ...
Image via Wikipedia

The main problem with anaerobic digestion of crop residues is that most of the agricultural residues are lignocellulosic with low nitrogen content. To improve the digestibility of crop residues, pre-treatment methods like size reduction, electron irradiation, heat treatment, enzymatic action etc are necessary. For optimizing the C/N ratio of agricultural residues, co-digestion with sewage sludge, animal manure or poultry litter is recommended.

Several organic wastes from plants and animals have been exploited for biogas production as reported in the literature. Plant materials include agricultural crops such as sugar cane, cassava, corn etc, agricultural residues like rice straw, cassava rhizome, corn cobs etc, wood and wood residues (saw dust, pulp wastes, and paper mill. Others include molasses and bagasse from sugar refineries, waste streams such as rice husk from rice mills and residues from palm oil extraction and municipal solid wastes, etc. However, plant materials such as crop residues are more difficult to digest than animal wastes (manures) because of difficulty in achieving hydrolysis of cellulosic and lignocellulosic constituents.

Crop residues can be digested either alone or in co-digestion with other materials, employing either wet or dry processes. In the agricultural sector one possible solution to processing crop biomass is co-digestion together with animal manures, the largest agricultural waste stream. In addition to the production of renewable energy, controlled anaerobic digestion of animal manures reduces emissions of greenhouse gases, nitrogen and odour from manure management, and intensifies the recycling of nutrients within agriculture.

In co-digestion of plant material and manures, manures provide buffering capacity and a wide range of nutrients, while the addition of plant material with high carbon content balances the carbon to nitrogen (C/N) ratio of the feedstock, thereby decreasing the risk of ammonia inhibition. The gas production per digester volume can be increased by operating the digesters at a higher solids concentration. Batch high solids reactors, characterized by lower investment costs than those of continuously fed processes, but with comparable operational costs, are currently applied in the agricultural sector to a limited extent.

Enhanced by Zemanta

Popular posts from this blog

Biomass Energy in Jordan

Image via Wikipedia Municipal solid wastes represent the best source of biomass in Jordan. In terms of quantity per capita and constituents, the waste generated in Jordan is comparable to most semi-industrialized nations. The per capita of waste generated in Jordan is about 0.9 kg/day. The total generation of municipal waste in Jordan is estimated at 1.84 million tons per year.   The main resources of organic waste in Jordan that can be potentially used to produce biogas are summarized as follows: Municipal waste from big cities Organic wastes from slaughterhouse, vegetable market, hotels and restaurants. Organic waste from agro-industries Animal manure, mainly from cows and chickens. Sewage sludge and septic. Olive mills. Organic industrial waste According to a study conducted by the Greater Amman Municipality, around 1.5 million tonnes of organic waste was generated in Jordan in 2009. In addition, an annual amount of 1.83 million cubic meter of septic and se...

A Glance at Composting Strategies

Image via Wikipedia The methodology of composting can be categorized into three major segments—anaerobic composting, aerobic composting, and vermicomposting. In  anaerobic composting , the organic matter is decomposed in the absence of air. Organic matter may be collected in pits and covered with a thick layer of soil and left undisturbed six to eight months. The compost so formed may not be completely converted and may include aggregated masses. Aerobic composting is the process by which organic wastes are converted into compost or manure in presence of air and can be of different types. The most common is the Heap Method, where organic matter needs to be divided into three different types and to be placed in a heap one over the other, covered by a thin layer of soil or dry leaves. This heap needs to be mixed every week, and it takes about three weeks for conversion to take place. The process is same in the Pit Method, but carried out specially constructed pits. Mixing has ...

Biomass Energy Developments in Jordan

Image via Wikipedia Renewable energy systems have been used in Jordan since early 1970s. Infact, Jordan has been a pioneer in renewable energy promotion in the Middle East with its first wind power pilot project in Al-Ibrahemiya as early as 1988. Systematic monitoring of the technological developments and implementation/execution of demonstration and pilot projects has been the hallmark of Jordan’s foray into clean energy sector. Municipal solid wastes represent the best source of biomass in Jordan. In terms of quantity per capita and constituents, the waste generated in Jordan is comparable to most semi-industrialized nations. The per capita of waste generated in Jordan is about 0.9 kg/day. The total generation of municipal waste in Jordan is estimated at 1.84 million tons per year.   The main resources of organic waste in Jordan that can be potentially used to produce biogas are summarized as follows: Municipal waste from big cities Organic wastes from slaughterhouse, veget...