Skip to main content

Food Waste Management Using Anaerobic Digestion

Photograph of anaerobic digesters at the Lübec...Image via Wikipedia
Anaerobic digestion is the most important method for the treatment of organic waste because of its techno-economic viability and environmental sustainability. The use of anaerobic digestion technology generates biogas and preserves the nutrients which are recycled back to the agricultural land in the form of slurry or solid fertilizer. The relevance of biogas technology lies in the fact that it makes the best possible utilization of various organic wastes as a renewable source of clean energy.

A biogas plant is a decentralized energy system, which can lead to self-sufficiency in heat and power needs, and at the same time reduces environmental pollution. Thus, anaerobic digestion of food waste can lead to climate change mitigation, economic benefits and landfill diversion opportunities.

Of the different types of organic wastes available, food waste holds the highest potential in terms of economic exploitation as it contains high amount of carbon and can be efficiently converted into biogas and organic fertilizer. Food waste can either be utilized as a single substrate in a biogas plant, or can be co-digested with organic wastes like cow manure, poultry litter, sewage, crop residues, abattoir wastes etc.

Food waste is one of the single largest constituent of municipal solid waste stream.  Diversion of food waste from landfills can provide significant contribution towards climate change mitigation, apart from generating revenues and creating employment opportunities. Rising energy prices and increasing environmental pollution makes it more important to harness renewable energy from food wastes. Anaerobic digestion technology is widely available worldwide and successful projects are already in place in several European as well as Asian countries which makes it imperative on waste generators and environmental agencies to root for a sustainable food waste management system.
Enhanced by Zemanta

Popular posts from this blog

Waste-to-Energy Pathways

The conversion of organic waste material to energy can proceed along three main pathways – thermochemical, biochemical and physicochemical. Thermochemical conversion, characterized by higher temperature and conversion rates, is best suited for lower moisture feedstock and is generally less selective for products. Thermochemical conversion includes incineration, pyrolysis and gasification. The incineration technology is the controlled combustion of waste with the recovery of heat to produce steam which in turn produces power through steam turbines. Pyrolysis and gasification represent refined thermal treatment methods as alternatives to incineration and are characterized by the transformation of the waste into product gas as energy carrier for later combustion in, for example, a boiler or a gas engine. Bio-chemical conversion processes, which include anaerobic digestion and fermentation, are preferred for wastes having high percentage of organic biodegradable (putrescible) matter and hi...

Storage of Biomethane

Image via Wikipedia The typical composition of raw biogas does not meet the minimum CNG fuel specifications. In particular, the CO 2 and sulfur content in raw biogas is too high for it to be used as vehicle fuel without additional processing. Biogas that has been upgraded to biomethane by removing the H 2 S, moisture, and CO 2 can be used as a vehicular fuel. Biomethane is less corrosive than biogas, apart from being more valuable as a fuel. Since production of such fuel typically exceeds immediate on-site demand, the biomethane must be stored for future use, usually either as compressed biomethane (CBM) or liquefied biomethane (LBM). Biomethane can be liquefied, creating a product known as liquefied biomethane (LBM). Two of the main advantages of LBM are that it can be transported relatively easily and it can be dispensed to either LNG vehicles or CNG vehicles. Liquid biomethane is transported in the same manner as LNG, that is, via insulated tanker trucks designed for tran...